Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 178(1): 88-103, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094344

RESUMO

A peptide reactivity assay with an activation component was developed for use in screening chemicals for skin sensitization potential. A horseradish peroxidase-hydrogen peroxide (HRP/P) oxidation system was incorporated into the assay for characterizing reactivity of hapten and pre-/prohapten sensitizers. The assay, named the Peroxidase Peptide Reactivity Assay (PPRA) had a predictive accuracy of 83% (relative to the local lymph node assay) with the original protocol and prediction model. However, apparent false positives attributed to cysteine depletion at relatively high chemical concentrations and, for some chemicals expected to react with the -NH2 group of lysine, little to no depletion of the lysine peptide were observed. To improve the PPRA, cysteine peptide reactions with and without HRP/P were modified by increasing the number of test concentrations and refining their range. In addition, removal of DL-dithiothreitol from the reaction without HRP/P increased cysteine depletion and improved detection of reactive aldehydes and thiazolines without compromising the assay's ability to detect prohaptens. Modification of the lysine reaction mixture by changing the buffer from 0.1 M ammonium acetate buffer (pH 10.2) to 0.1 M phosphate buffer (pH 7.4) and increasing the level of organic solvent from 1% to 25% resulted in increased lysine depletion for known lysine reactive chemicals. Refinement of the prediction model improved the sensitivity, specificity, and accuracy for hazard identification. These changes resulted in significant improvement of the PPRA making it is a reliable method for predicting the skin sensitization potential of all chemicals, including pre-/prohaptens and directly reactive haptens.


Assuntos
Alternativas aos Testes com Animais , Dermatite Alérgica de Contato , Peroxidases , Alérgenos/efeitos adversos , Animais , Cisteína , Dermatite Alérgica de Contato/diagnóstico , Haptenos/efeitos adversos , Ensaio Local de Linfonodo , Peptídeos , Pele
2.
Birth Defects Res ; 110(11): 916-932, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536674

RESUMO

Physiologically based pharmacokinetic (PBPK) models are developed from compound-independent information to describe important anatomical and physiological characteristics of an individual or population of interest. Modeling pediatric populations is challenging because of the rapid changes that occur during growth, particularly in the first few weeks and months after birth. Neonates who are born premature pose several unique challenges in PBPK model development. To provide appropriate descriptions for body weight (BW) and height (Ht) for age and appropriate incremental gains in PBPK models of the developing preterm and full term neonate, anthropometric measurements collected longitudinally from 1,063 preterm and 158 full term neonates were combined with 2,872 cross-sectional measurements obtained from the NHANES 2007-2010 survey. Age-specific polynomial growth equations for BW and Ht were created for male and female neonates with corresponding gestational birth ages of 25, 28, 31, 34, and 40 weeks. Model-predicted weights at birth were within 20% of published fetal/neonatal reference standards. In comparison to full term neonates, postnatal gains in BW and Ht were slower in preterm subgroups, particularly in those born at earlier gestational ages. Catch up growth for BW in neonates born at 25, 28, 31, and 34 weeks gestational age was complete by 13, 8, 6, and 2 months of life (males) and by 10, 6, 5, and 2 months of life (females), respectively. The polynomial growth equations reported in this paper represent extrauterine growth in full term and preterm neonates and differ from the intrauterine growth standards that were developed for the healthy unborn fetus.


Assuntos
Estatura , Peso Corporal , Crescimento e Desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Nascimento Prematuro/fisiopatologia , Pré-Escolar , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Padrões de Referência
3.
Regul Toxicol Pharmacol ; 73(2): 530-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26188115

RESUMO

2-Phenoxyethanol (PhE) has been shown to induce hepatotoxicity, renal toxicity, and hemolysis at dosages ≥ 400 mg/kg/day in subchronic and chronic studies in multiple species. To reduce uncertainty associated with interspecies extrapolations and to evaluate the margin of exposure (MOE) for use of PhE in cosmetics and baby products, a physiologically-based pharmacokinetic (PBPK) model of PhE and its metabolite 2-phenoxyacetic acid (PhAA) was developed. The PBPK model incorporated key kinetic processes describing the absorption, distribution, metabolism and excretion of PhE and PhAA following oral and dermal exposures. Simulations of repeat dose rat studies facilitated the selection of systemic AUC as the appropriate dose metric for evaluating internal exposures to PhE and PhAA in rats and humans. Use of the PBPK model resulted in refinement of the total default UF for extrapolation of the animal data to humans from 100 to 25. Based on very conservative assumptions for product composition and aggregate product use, model-predicted exposures to PhE and PhAA resulting from adult and infant exposures to cosmetic products are significantly below the internal dose of PhE observed at the NOAEL dose in rats. Calculated MOEs for all exposure scenarios were above the PBPK-refined UF of 25.


Assuntos
Acetatos/metabolismo , Etilenoglicóis/farmacocinética , Modelos Biológicos , Incerteza , Acetatos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Relação Dose-Resposta a Droga , Etilenoglicóis/toxicidade , Humanos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Ratos , Medição de Risco/métodos , Especificidade da Espécie
4.
Toxicol Appl Pharmacol ; 287(2): 139-148, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028483

RESUMO

Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers.


Assuntos
Aminofenóis/farmacocinética , Tinturas para Cabelo/farmacocinética , Hepatócitos/metabolismo , Queratinócitos/metabolismo , Absorção Cutânea/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Humanos , Espectrometria de Massas , Taxa de Depuração Metabólica , Ratos
5.
Reprod Toxicol ; 55: 50-63, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597788

RESUMO

We present a quantitative in vitro-in vivo extrapolation framework enabling the estimation of the external dermal exposure dose from in vitro experimental data relevant to a toxicity pathway of interest. The framework adapts elements of the biological pathway altering dose (BPAD) method [Judson et al. Chem Res Toxicol 2011;24:451] to the case of dermal exposure. Dermal doses of four toxicants equivalent to concentrations characterizing their effect on estrogen receptor α or androgen receptor activity in chemical-activated luciferase expression (CALUX) assays are estimated. The analysis shows that dermal BPADs, calculated from one in vitro concentration, can differ by up to a factor of 55, due to the impact applied dose and dermal exposure scenarios can have on skin permeation kinetics. These features should therefore be taken into account in risk assessment of dermally applied chemicals.


Assuntos
Modelos Biológicos , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Absorção Cutânea , Administração Cutânea , Compostos Benzidrílicos/toxicidade , Compostos Bicíclicos com Pontes/toxicidade , Estradiol/toxicidade , Humanos , Oxazóis/toxicidade , Fenóis/toxicidade
6.
In Silico Pharmacol ; 1: 10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25505655

RESUMO

PURPOSE: 1. To develop a framework for exposure calculation via the dermal route to meet the needs of 21st century toxicity testing and refine current approaches; 2. To demonstrate the impact of exposure scenario and application conditions on the plasma concentration following dermal exposure. METHOD: A workflow connecting a dynamic skin penetration model with a generic whole-body physiologically-based pharmacokinetic (PBPK) model was developed. The impact of modifying exposure scenarios and application conditions on the simulated steady-state plasma concentration and exposure conversion factor was investigated for 9 chemicals tested previously in dermal animal studies which did not consider kinetics in their experimental designs. RESULTS: By simulating the animal study scenarios and exposure conditions, we showed that 7 studies were conducted with finite dose exposures, 1 with both finite and infinite dose exposures (in these 8 studies, an increase in the animal dose resulted in an increase in the simulated steady-state plasma concentrations (C p,ss)), while 1 study was conducted with infinite dose exposures only (an increase in the animal dose resulted in identical C p,ss). Steady-state plasma concentrations were up to 30-fold higher following an infinite dose scenario vs. a finite dose scenario, and up to 40-fold higher with occlusion vs. without. Depending on the chemical, the presence of water as a vehicle increased or decreased the steady-state plasma concentration, the largest difference being a factor of 16. CONCLUSIONS: The workflow linking Kasting's model of skin penetration and whole-body PBPK enables estimation of plasma concentrations for various applied doses, exposure scenarios and application conditions. Consequently, it provides a quantitative, mechanistic tool to refine dermal exposure calculations methodology for further use in risk assessment.

7.
Toxicol Sci ; 122(2): 422-36, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21555337

RESUMO

To establish further a practical quantitative in chemico reactivity assay for screening contact allergens, lysine peptide was incorporated into a liquid chromatography and tandem mass spectrometry-based assay for reactivity assessments of hapten and pre-/pro-hapten chemical sensitizers. Loss of peptide was determined following 24 h coincubation with test chemical using a concentration-response study design. A total of 70 chemicals were tested in discrete reactions with cysteine or lysine peptide, in the presence and absence of horseradish peroxidase-hydrogen peroxide oxidation system. An empirically derived prediction model for discriminating sensitizers from nonsensitizers resulted in an accuracy of 83% for 26 haptens, 19 pre-/pro-haptens, and 25 nonsensitizers. Four sensitizers were shown to selectively react with lysine including two strong/extreme and two weak sensitizers. In addition, seven sensitizers were identified as having higher reactivity toward lysine compared with cysteine. The majority of sensitizing chemicals (27/45) were reactive toward both cysteine and lysine peptides. An estimate of the relative reactivity potency was determined based on the concentration of test chemical that depletes peptide at or above a threshold positive value. Here, we report the use of EC15 as one example to illustrate the use of the model for screening the skin sensitization potential of novel chemicals. Results from this initial assessment highlight the utility of lysine for assessing a chemical's potential to elicit sensitization reactions or induce hypersensitivity. This approach has the potential to qualitatively and quantitatively evaluate an important mechanism in contact allergy for hazard and quantitative risk assessments without animal testing.


Assuntos
Alérgenos/química , Lisina/química , Peroxidase/metabolismo , Testes de Toxicidade/métodos , Alérgenos/toxicidade , Alternativas ao Uso de Animais , Cromatografia Líquida de Alta Pressão , Cisteína/química , Cisteína/toxicidade , Dermatite Alérgica de Contato/diagnóstico , Haptenos/química , Humanos , Lisina/toxicidade , Peptídeos/química , Medição de Risco , Pele/efeitos dos fármacos , Testes Cutâneos/métodos , Espectrometria de Massas em Tandem
8.
Toxicol Sci ; 112(1): 164-74, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19748994

RESUMO

Skin protein reactivity is a well established key step in the development of skin sensitization. Understanding the relationship between a chemical's ability to react with or modify skin protein and skin sensitization has led to the development of the Direct Peptide Reactivity Assay (DPRA) in our laboratory. A current limitation of the DPRA is that it cannot readily measure the reactivity of pro-hapten chemical sensitizers. Pro-haptens are chemical sensitizers that are not directly reactive and must be bioactivated in vivo to form an electrophilic intermediate(s). Results from this work demonstrate the utility of using horseradish peroxidase and hydrogen peroxide (HRP/P) for assessing the skin sensitization potential of pro-haptens. In comparison with "direct" reactivity assessments without HRP/P, statistically significant increases in peptide depletion for all pro-haptens examined were observed following coincubation with HRP/P. Conversely, the percent peptide depletion for all pre-haptens was equally high (> 40% depletion) with and without HRP/P demonstrating an auto-oxidation pathway. In contrast, peptide depletion for all nonsensitizing chemicals examined was low with and without HRP/P. The optimal HRP/P concentrations, incubation time and optimal peptide:chemical ratio were determined using a sensitive and selective high-performance liquid chromatography tandem mass spectrometry detection method. Dithiothreitol was incorporated to reverse the dimerization of the thiol-containing cysteine peptide nucleophile. This preliminary work shows the potential to incorporate an enzyme-mediated activation step for pro-haptens into an in chemico skin sensitization assay that results in the detection of all types of sensitizers.


Assuntos
Cisteína/química , Haptenos/toxicidade , Peptídeos/metabolismo , Peroxidases/metabolismo , Peróxidos/metabolismo , Pele/efeitos dos fármacos , Catecóis/farmacologia , Cromatografia Líquida de Alta Pressão , Ditiotreitol/farmacologia , Oxirredução , Peptídeos/química , Pele/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...